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LEITER TO THE EDITOR 

Some constant solutions to Zamolodchikov’s tetrahedron 
equations 

Jarmo Hietarintat 
Department of Physics, University of lbrku, 20500 lbrku, Finland 

Received 11 September 1992 

Abstract In this letter we present constan1 solutions to the tetrahedmn equations 
proposed by Zamolcdchrkov. In general, from a given solution of the Yang-Baxter 
equation there are two ways to construct solutions to the tetrahedron equation. There 
are also other kinds of solulions. We present some two-dimensional solutions that 
were obtained by directly solving the equations using either an upper triangular or 
Zamolodchikov’s ansatz. 

The theory of integrable dynamical systems in 1+1 dimensions (both continuous PDE 
and discrete lattice systems) is now fairly well understood, and at present an increasing 
amount of research is focused on generalizations to higher dimensions. 

Ih 1+1 dimensions the key equation for integrability of lattice systems [l] and 
quantum inverse transformation [2] is the quantum Yang-Baxter equation (YBE) [3] 

R ; ; ~ ( ~ ) R ! $ ; ( ~  + U)~t&, (v )  = ~ k z k ’ ( . ) ~ : ; k ( ~  J2J1 + U ) ~ $ : ; 2 ( u ) .  (1) 

(Here and in the following summation over repeated indices is understood.) In 
dimension N there are N 6  equations for N4 variables. 

The constant, spectral parameter independent version of (1) is 

This is obtained as the limit U = v = 0 or U = U = &CO, but appears also 
independently in the study of quantum groups [4] and knot theory [5 ] .  In the 
shorthand notation one writes out only the labels of subspaces on which the matrices 
act: 

R12R13%3 = %3R13R12. (26) 

In [6] Zamolodchikov proposed a three-dimensional generalization of YBE based 
on scattering of straight strings. A lattice interpretation was later given by Bazhanov 
and Stroganov [7] and by Baxter [SI. The work [6-8] produced a spectral parameter 
dependent equation (with three ‘spectral angles’ related by rules of spherical 
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trigonometry). As for YBE one has also a spectral parameter independent formulation, 
which can be taken as a special limit or may be considered in its own right. We will 
discuss here only this constant form of Zamolodchikov’s tetrahedron equation (ZTE), 
which is 

ktkzkt fIkiksalr lrk6 ~ l t l 5 1 6  - ~ k , ~ , k r ~ k z k r l a ~ ) ; ~ f ~ I ,  ~ l i l z l t  
% j h  IZ.kAjs k z k u 6  k,krks - J S J ~ J ~  J z J r k 6  J n k h  k t k h  (3n) 

or in the shorthand notation 

R17.31Z.145R246%56 = R3561Z.2d6R14SR123~ (36) 

Now there are NI2 equations for N 6  variables; even for the simplest non-trivial case 
of N = 2 there are 4096 equations for 64 variables. 

There is a natural method of generalizing this to higher dimensions, see [7, 91. 
The hierarchy so obtained is not just formal: in the following we show how each 
solution of a higher level equation yields solutions for the lower level, and how each 
lower level solution can be used to get solutions at higher level. 

There is also another generalization to three dimensions by Frenkel and Moore 
[lo]: 

T123F1243~;343m = 3z34313431~4~~~3~ (4) 

Here there are only four different subspaces on which the matrices act. Carter and 
Saito have shown [ll] how both of these fit into a generalized sequence of higher 
dimensional equations, ZTE and Frenkel-Moore equation are just located on different 
rays starting from YBE. In this letter we consider only ZTE. 

Before discussing the solutions it is useful to recall the symmetries of the 
tetrahedron equations. This is important for classifying the solutions, for there is 
no point in repeating a solution in a form that can be obtained by one of the allowed 
transformations. 

The symmetries of (3) are basically the same as those of YBE. First of all there is 
the invariance under continuous transformations 

IZ. -* dQ@ Q B  Q)IZ.(Q@ Q B ~ 1 - l  (5) 

where Q is a non-singular N x N matrix and n a non-zero number. 
There are also discrete symmetries: 

In writing out the triple-indexed object we use the usual matrix notation and the 
connection is 

l t ( m - l ) N t ( n - l ) N Z  - IZ.;y 
IZ.i+(j-l)N+(k-l)N’ - 

In this notation (6a) corresponds to the usual matrix transposition. For N = 2, s = 1 
(a) followed by (Q) corresponds to transposition across the auxiliary diagonal; 
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transformation (6c) corresponds to the simultaneous exchange of the following 
columns (and rows): 2 - 5, and 4 c 7. 

In the following we need a notation for traces of multi-index matrices, we use a 
square bracket to denote the location of the traced index, e.g. ('R[2])&! = C, R$j. 

Let us now assume that we have a non-singular solution of (3). Multiplymg 
(3n) by ('R-'):!:: and summing over the repeated indices yields (2) for R[1] with 
renumbering of indices. The same result is obtained for R[3] with (7Z-I);;:;;. One 
can obtain an even stronger result. For that we need the following: 

DpEniriorr. Three double-indexed matrices (A ,  M, E )  form an associared rriple of 
Yang-Baxter matrices (AT) if the following equations hold 

'kivially ( R , R ,  R) is an AT if R is a constant solution of (Z), but more 
interestingly, if R(z) is a solution of (l), then (R(O), R(r ) ,  R(0)) is also an AT, 
as can be readily seen by substituting U = 0 and/or U = 0 into (1). This does not 
exhaust the solutions, for example ( P ,  hf, P ) ,  where P is the permutation matrix, is 
an AT for an arbitrary M .  

Let us now return to ZTE. Above we showed that if 'R is non-singular then R[1] 
and R[3] satisfy (2). If also R f l  and 72'' (transpose on the first and third index, 
respectively) are non-singular, then after multiplying (3n) by (('R.'t)-I);$''; and by 

(('Rf3)-1){;!,!,!; one finds that ('R[l],R[2],R[3]) must be an AT. This fact can be used 
in limiting the ansatz for ZTE. 

If the same method is applied to (2) one gets the condition of commutativity 
for its trace matrices. For constant solutions the only non-trivial condition is that 
R:," and RZI commute. (It should be noted here that non-singularity is a necessary 
requirement and there is a singular solution (i?Hl.5 of [13]) for which these trace 
matrices do not commute.) 

An interesting open problem is to see if the above works with spectral parameters. 
At each level the spectral parameters live in different spaces, but there is probably a 
natural projection which is necessary for obtaining the correct equation for the trace 
matrices. 

Above we showed how each non-singular solution of (3) in dimension N yields 
an AT of the same dimension. We will now show how each such AT yields a solution 
of (3) of dimension N 2 .  This is a generalization of [12, 111 where the AT ( R ,  R, R )  
was used. 

Let 

then we have 
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R k i k + R l i k , k ,  Id&r xldsl~ 
IIIZII k i j d j r x k z k d j a  k ikrkb  

k;kg  M k ! k ;  B k : k :  

( A k ; k ;  k i j ;  k : j : ) ( A k ; k ;  k!k; ktk;) 

k i k i A l r k i  Ai i l :  k:k; M l : k ; A I ; I ;  = I A j ; j ;  k ; j ;  k ; k ; l [ M j : j ;  k : j ;  k ; k ; l  

[&k; M l : k ; M I : l ;  k :kkBl:k t  Blk l i  

k;k;Ak;I; kfk; M k : i ; M l : f ;  
= [ A j ; j i  1;k;  k ; k ; l [ A j ; j ;  j ~ t ;  k:k;] 

ktk; M k t l ;  Bl:lt l I B y k $  B k : l t  Bl:l; 

13' $16 ;I; j i k ;  itkt) 

Irk:  M l : k ;  Bk:k: )  

i; l;  Ml! l t  Bl!l,b 

= ( A j ; j ;  j t j ;  j t j :  ) C A k ; j ;  k t j ;  ~ t j ;  

I ; I ;  M l : k ;  Bl:k: 

] : j ,b  k g j ;  k : k ; l [ B j i j :  k i j t  k i k t l  

x [hf.,., i1i6 j t k ;  kik,b t j :  j : k :  k*kbl , I 

= (A;:;: M;&!,? 

k:i;  M l : i :  Bl:l: r;l;  M k : l ;  Bl;l: 
( A j ; k ;  k:k; k : k : ) ( A k ; k ;  j ! k ;  kik:) 

(9) = . g l k l k . ~ k ~ k J , ~ k r l . l r  R1 t121 ,  
1 1 ) ~ > 6  I Z I , ~ ~  1 i k 4 k i  k i k t k ,  

i.e. The thud equality sign follows from the assumption that 
( A ,  M, €3) forms an AT. Note that if we use the AT (R(O), R(+),  R(0) )  the spectral 
parameter of YBE plays now the role of an ordinary parameter in a constant solution 

In the above construction t h e  dimension of the space gets squared. There is also 

Let us assume that RI,, = R,, @ m3. Then it is easy to see that 'R solves (3) if 

(a) mz = 0 for example 

R. satisfies (3). 

of (3). 

a method of getting solutions of the same dimension. 

any of the following holds 

R = A @ ( :  i) 
is a solution for arbitrary A. 

(b) (m@m)R = R(na@m) = 0 here we may nevertheless assume that m2 + 0, 
thus for a non-trivial solution there is precisely one non-zero entry on the diagonal. 
A typical solution is 

0 0 0 0  

R=(' O d e f  a ')@(A :). 
O g h j  

(c) R is a solution of (2) and [R, m @ m] = 0 the last commutation condition 
is trivially true if m = lZx2, but depending on R it can have much more general 
solutions and provide non-trivial interaction. 

The above works equally well for 'R,, = m, @ &. 
We have also searched directly for particular two-dimensional solutions that do 

not fit into the general form of given above. Since the full set has 40% quadratic 
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equations in 64 variables it is not yet feasible to find the complete solution as in [13]. 
We will now describe the results of some ansatze that worked well for the Yang- 
Baxter equation. The computations were done using the symbolic algebra language 
REDUCE 3.4 1141, the equations were analysed using the GROEBNER package [15] 

Upper triangular amulz. If the entries on the diagonal are = 1, then the only new 
solution is 

written for REDUCE. 

72, = 

l q p k d c b a  
O l O p O d O b  

O O O l O O O d  
O O O O l q p k  

O O l q O O d c  

0 0 0 0 0 1 0 p  
0 0 0 0 0 0 1 q  
0 0 0 0 0 0 0 1  

This is clearly a tetrahedron generalization of the Yang-Baxter solution R,,, of 1131. 
We have also looked at solutions with arbitrary non-zero entires on the diagonal. 

This search is still open but so far we have not found anything interesting. 
BidiQgonal amah In [6] Zamolodchikov proposed an ansatz for obtaining a spectral 
parameter dependent solution. As shown in [9] it amounts to allowing non-zero 
entries only on the diagonal and on the auxiliary diagonal with certain symmetry 
relations. We take this bidiagonal without any additional relations, i.e. 

RE = 

/ a , O O O O O O a ,  
0 bz 0 0 0 0 b, 0 

0 0 O d , d s O  0 0 
0 0 0 e 4 e S  0 0 0 

0 0 c3 0 0 ca 0 0 

0 0 f 3 0 0 f 6 0 0  
0 g2 0 0 0 0 9, 0 

\ h , O O O O O O h ,  

To save space we write out only the two diagonals: 

RE = [a,, b2, ~ 3 . 4 ,  e5, f a , g l ,  hs;a,, b13 c69 d 5 ,  e4, f3rgz3  hi].  (1lb) 

First of all we have a purely diagonal solution 

72, = [a , ,  bZ.c3, d 4 ,  eS, f6,g7, h,;O,O,O,O,O,O,O,OI (12) 

as we have for YBE (RH3, ,  of 1131). 

be relations among them, as follows 
If there are non-zero entries only on the auxiliary diagonal, there must already 

% = [0,0,0,0,0,0,0,0;a8, b,,'%,dS, d 5 3 c 6 ,  b7,a81 (13) 

cf RH,.4 of [13]. 
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We have also searched for all solutions where all entries on both diagonals are 
actually non-zero and for which the determinant of the matrix is also non-zero. This 
resulted in the following solutions: 

R., = [ ~ , ~ , ~ 1 , ~ 2 , 1 , ~ 1 ~ , , ~ Z , ~ z ; q , q , ~ z ~ ,  ~ l q , q , ~ l ~ z q , c , q , ~ l q ~  (14) 
and 

R.5 = [I, €1, €2, €3, €1, E I E 2 E 3 ,  €3, €163; 1, -c263, - € 2 7  € I E 2 r  -€ZE3r €1€2€3, €I€Z, 

(15) 
Here q is a free parameter and ci = kl, independently. Note however, that if all 
ei = + I  then the solutions can in fact be diagonalized. 

Within this ansatz there are numerous other solutions with some entries zero, let 
me just mention one: 

where F6 = 1. 
Ofher solurionS. We have also searched for solutions for which ‘E$” p 0 only if 
i + j + k - 1 - m - n = 0, but this ansatz did not yield any interestlng non-singular 
solutions. One nice singular solution is 

R, = I 1 , F 2 , E , € I , E 2 , F € 1 , € 2 , F Z E Z ; 1 , 0 1 0 1 0 , 0 . 0 1 0 1  (16) 

% = 611 11 6!2 I 2  a’? I 1  - 6!3 I1 6!z 31 6!’ J 3  + &!I 11 &!I 12 6!’ 13’  (17) 
There is a huge number singular solutions, here are just two that are ‘arrow-like’: 

0 0 0 a4 0 a6 a4 a8 
0 0 0  0 0 0 0 -a6 

0 0 0  0 0 0 0 -a6 (18) 
0 0 0 0 0 0  0 
0 0 0  0 0 0 0 
1 0 0  0 0 0 0 

and if the lower left hand corner is zero, then the other entries are free: 

0 0 0  0 0 0 0 b, 
0 0 0  0 0 0 0 CR 

0 0 0 a4 0 a6 a4 

0 0 0  0 0 0 0 e 8 ‘  
0 0 0  0 0 0 0 0 
0 0 0  0 0 0 0 0 1 I 0 0 0  0 0 0 0 0 

0 0 0  0 0 0 0 0 

In this letter we have shown that, contrary to the popular pessimistic view, ZTE 
does indeed have many solutions. Some of them are inherited from the YBE but 
even then they have some extra structure. As shown above, there are also genuinely 
new solutions with no such connection. (The algebraic aspects of these solutions will 
be discussed elsewhere [16].) Here we have only scratched the surface and many 
interesting solutions are still to he found. For example so far we have no genuinely 
new solutions where the parameters are related in a non-linear way. What we now 
need is a fruitful ansatz; probably it will come from physical applications. 
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